CS-STEM Curriculum

Select a curriculum below for more information

Coding and Computational Thinking with LEGO SPIKE Prime (3.0)

View Coding and Computational Thinking with LEGO SPIKE Prime (3.0)

Coding and Computational Thinking with LEGO SPIKE Prime (3.0) provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. This curriculum includes videos, animations, and step-by-step lessons designed to help beginners learn behavior-based programming using the LEGO SPIKE Prime hardware and the 3.0 version of the Scratch-based programming software.

Topics Covered

Getting Started with SPIKE Prime (3.0)
Programming the Hub with SPIKE Prime (3.0)
Robot Movement with SPIKE Prime (3.0)
Wait Until & Sensors with SPIKE Prime (3.0)
Loops with SPIKE Prime (3.0)
Discrete Decisions with SPIKE Prime (3.0)
Capstone: Subterranean Challenge with SPIKE Prime (3.0)
Continuous Decisions with SPIKE Prime (3.0)

CS-STEM Curriculum and Technology Showcase

View CS-STEM Curriculum and Technology Showcase

A showcase of new technologies on the CS-STEM Network

Check out our virtual robotics curriculum, machine learning simulator, and co-robotic games!

The Carnegie Mellon Robotics Academy provides Virtual EV3 and Virtual SPIKE Prime curricula that allow students to follow along using a coding environment and virtual robot built right into the web pages of the CS-STEM Network. This Technology Showcase includes sample activities from the full curricula. More details are available at the Carnegie Mellon Robotics Academy website

In the Machine Vision Primer, you'll learn how Machine Vision can be integrated into robotics systems to automatically perform tasks such as image detection and quality control. 

Program your co-robotic partner to help you as you play the Player-Programmed-Partner Games!

Topics Covered

Iris Rover Challenge with VICE Virtual Robot
Virtual SPIKE Prime Coding - Iris Rover Challenge
Virtual EV3 Coding - Sensabot Challenge
Machine Vision
Player-Programmed-Partner Games

Coding and Computational Thinking with LEGO SPIKE Prime (2.0)

View Coding and Computational Thinking with LEGO SPIKE Prime (2.0)

Learn to Program the LEGO SPIKE Prime

Coding and Computational Thinking with LEGO SPIKE Prime (2.0) provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. This curriculum includes videos, animations, and step-by-step lessons designed to help beginners learn behavior-based programming using the LEGO SPIKE Prime hardware and the legacy 2.0 version of the Scratch-based programming software.

Topics Covered

Getting Started with SPIKE Prime
Programming the Hub with SPIKE Prime
Robot Movement with SPIKE Prime
Wait Until & Sensors with SPIKE Prime
Loops with SPIKE Prime
Discrete Decisions with SPIKE Prime
Capstone: Subterranean Challenge with SPIKE Prime
Continuous Decisions with SPIKE Prime

Coding and Computational Thinking with VIRTUAL SPIKE Prime - PREVIEW

View Coding and Computational Thinking with VIRTUAL SPIKE Prime - PREVIEW

PREVIEW

This badge is a free preview of the Coding and Computational Thinking with Virtual SPIKE Prime curriculum. Learn how to access the full curriculum here.

Coding and Computational Thinking with Virtual SPIKE Prime features a programming interface and virtual robot embedded directly within the curriculum. Teachers and students can follow along with the included videos, animations, challenges, and step-by-step lessons. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. The scope and sequence of this virtual curriculum are very closely aligned to our Coding and Computational Thinking with SPIKE Prime curriculum for physical robots, allowing teachers to leverage both physical and virtual robots to best suit their needs.


The Coding and Computational Thinking with Virtual SPIKE Prime curriculum is broken down into 8 units: Getting Started, Programming the Hub, Robot Movement, Wait Until & Sensors, Loops, Discrete Decisions, Capstone: Subterranean Challenge, and Continuous Decisions. Over 75 programmable virtual environments are embedded throughout, allowing students to learn big ideas in robotics, coding, computational thinking, and mathematics.

The virtual robot itself contains simulated versions of the programmable motors, sensors, and other components. A built-in sensor dashboard allows students and teachers to quickly inspect the values the robot sees, speeding up the process of developing and troubleshooting their code. 
Coding and Computational Thinking with Virtual SPIKE Prime takes a just-in-time and embedded approach. As students make progress through the course (which the Learning Management System keeps track of), CS2N ensures sure that students are presented with the corresponding instructions, virtual environment, and programming interface. CS2N automatically saves student code progress with each activity so that they never lose it and teachers never have to track it down. Virtual activities can be run as many times as the student needs to foster their understanding, and their completion is automatically awarded so that students know when to move on. 

Once they have a license, teachers and students can use the curriculum whether they’re at home, school, or anywhere else in the world as long as they have an Internet-connected Chromebook, Windows PC, and Mac. 

Topics Covered

Virtual SPIKE Prime Coding - Iris Rover Challenge

RoboCamp with Virtual SPIKE Prime - PREVIEW

View RoboCamp with Virtual SPIKE Prime - PREVIEW

PREVIEW

This badge is a free preview of RoboCamp with Virtual SPIKE Prime. Learn how to access the full camp here.

RoboCamp with Virtual SPIKE Prime is an informal curriculum that teaches basic programming, proportional mathematics, robotics, and other STEM concepts at an introductory level. RoboCamp is designed with carefully scaffolded virtual activities appropriate for both formal and informal educational settings. All of the activities and challenges use a custom virtual SPIKE Prime build in a space-like environment. Get ready for take-off! 
RoboCamp with Virtual SPIKE Prime is perfect for:
  • Summer Camps
  • Workshops
  • Afterschool Programs
  • Classroom Specials
  • Interdisciplinary STEM Lessons

RoboCamp with Virtual SPIKE Prime includes virtual environments so that students can follow along with all lesson content, from anywhere in the world. All lessons are self-contained, require a minimum of instructor supervision, and include built-in opportunities to self-assess progress. 

Each section within this RoboCamp includes access to a more open-ended Lunar Level. Here, students can choose how to remix the new concepts that they've learned to explore, create messages, and even send moon rocks flying. These "unstructured play" opportunities create increased engagement even while students deepen their experience in meaningful learning outcomes. 
The virtual robot itself contains simulated versions of the programmable motors, distance sensor, and other components. A built-in sensor dashboard allows students and teachers to quickly inspect the values the robot sees, speeding up the process of developing and troubleshooting their code. 

RoboCamp with Virtual SPIKE Prime takes a just-in-time and embedded approach. As students make progress through the course (which the CS2N Learning Management System keeps track of), CS2N ensures sure that students are presented with the corresponding instructions, virtual environment, and programming interface. CS2N automatically saves student code progress with each activity so that they never lose it and teachers never have to track it down. Virtual activities can be run as many times as the student needs to foster their understanding, and their completion is automatically awarded so that students know when to move on. Once they have a license, teachers and students can use the curriculum whether they’re at home, school, or anywhere else in the world as long as they have an Internet-connected Chromebook, Windows PC, and Mac. 

Coding and Computational Thinking with VEX IQ (2nd Gen)

View Coding and Computational Thinking with VEX IQ (2nd Gen)

Learn about coding and computational thinking with the VEX IQ (2nd Gen) robot.

Coding and Computational Thinking with VEX IQ (2nd Generation) provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. This curriculum includes videos, animations, and step-by-step lessons designed to help beginners learn behavior-based programming using the VEX IQ 2nd Generation hardware and VEXcode programming software.

Topics Covered

Getting Started with VEX IQ
Programming the Brain with VEX IQ
Robot Movement with VEX IQ
Digital Sensors with VEX IQ
Analog Sensors with VEX IQ
Loops with VEX IQ
Discrete Decisions with VEX IQ
Capstone: Subterranean Challenge with VEX IQ
Continuous Decisions with VEX IQ

Coding and Computational Thinking with a Virtual Robot - PREVIEW

View Coding and Computational Thinking with a Virtual Robot - PREVIEW

PREVIEW

This badge is a free preview of the Coding and Computational Thinking with a Virtual Robot curriculum. Learn how to access the full curriculum here.

 Coding and Computational Thinking with a Virtual Robot features a programming interface and virtual robot embedded directly within the curriculum. Teachers and students can follow along with the included videos, animations, challenges, and step-by-step lessons. The projects are designed to get students thinking about the patterns and structure of not just robotics but also programming and problem-solving more generally.

Coding and Computational Thinking with a Virtual Robot features a brand-new bot designed by our team, lovingly dubbed "VICE" (short for Virtual-Integrated Curriculum Environment). VICE packs a wide variety of sensors (touch, color, distance, gyro) to detect its environment, outputs (pixel display, speaker, LCD, LED) to communicate with you, and motors (drivetrain, arm, claw) to navigate its environment and manipulate objects. Robotics educators that use robotics kits with similar features and form factors (VEX, Arduino, Cozmo, Vector, and many others) will find productive overlap in the programming concepts the physical and virtual robots can be used to teach; the scope and sequence of this virtual curriculum are very closely aligned to our Coding and Computational Thinking with VEX IQ curriculum for physical robots, allowing teachers to leverage both physical and virtual robots to best suit their needs.

 
The Coding and Computational Thinking with a Virtual Robot curriculum is broken down into 9 units: Getting Started, Programming the Hub, Robot Movement, Digital Sensors, Analog Sensors, Loops, Discrete Decisions, Capstone: Subterranean Challenge, and Continuous Decisions. Over 75 programmable virtual environments are embedded throughout, allowing students to learn big ideas in robotics, coding, computational thinking, and mathematics. 

Coding and Computational Thinking with a Virtual Robot takes a just-in-time and embedded approach. As students make progress through the course (which the Learning Management System keeps track of), CS2N ensures sure that students are presented with the corresponding instructions, virtual environment, and programming interface. CS2N automatically saves student code progress with each activity so that they never lose it and teachers never have to track it down. Virtual activities can be run as many times as the student needs to foster their understanding, and their completion is automatically awarded so that students know when to move on. 
Once they have a license, teachers and students can use the curriculum whether they’re at home, school, or anywhere else in the world as long as they have an Internet-connected Chromebook, Windows PC, and Mac. 

Topics Covered

Iris Rover Challenge with VICE Virtual Robot

Coding and Computational Thinking with VEX V5

View Coding and Computational Thinking with VEX V5

Learn to program the VEX V5 in VEXcode C++

This curriculum provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. This curriculum includes videos, animations, and step-by-step lessons designed to help learners foster Computational Thinking using the VEX V5 hardware and VEXcode programming software.

Topics Covered

Getting Started with VEX V5 and EXP
Robot Brain with VEX V5 & EXP
Robot Movement with VEX V5
Wait Until with VEX V5
Functions with VEX V5
Loops with VEX V5
Conditional Statements with VEX V5
Capstone Project with VEX V5
Camera Navigation with VEX V5

Mechanical Foundations with VEX V5

View Mechanical Foundations with VEX V5

Learn how components of a robot connect and transfer motion

Mechanical Foundations focuses on mechanical concepts such as structural design, weight distribution, drivetrains, fastening, the relationship between speed and torque, and alternate methods of transferring motion such as linear slides and belts and pulleys. This curriculum familiarizes students with the foundational skills needed to understand how components come together and different use cases for creating motion.
SMART is an ARM Endorsed program

Topics Covered

Strength, Stability, and Balance with VEX V5
Transmissions and Mechanical Advantage with VEX V5
Drivetrains with VEX V5

Software Foundations with VEX V5

View Software Foundations with VEX V5

Software Foundations is an introduction to programming concepts.

Software Foundations is an introduction to programming concepts. Students who complete this curriculum demonstrate an understanding of the software engineering process through repeated planning, testing, and iteration throughout the units. Students also learn basic robot movement, how to use feedback from different kinds of sensors, and how to create complex programs using loops and decision-making logic.
SMART is an ARM Endorsed program

Topics Covered

Getting Started with V5 Software Foundations
Open Loop Movement with VEX V5
Sensing with VEX V5
Camera Navigation with VEX V5
Support