Educators: Research In Motion
The Robots In Motion (RIM) research project stems from The Robot Algebra Project. The Robot Algebra project is a collaborative project the University of Pittsburgh’s Learning Research and Development Center (LRDC) and Carnegie Mellon’s Robotics Academy (CMU) to develop instructional materials designed to significantly improve robotic education’s ability to use robotic project based learning activities to increase students’ mathematical competency. The goals of this project are to:
Project Description
Testing Initiatives
Project Development and Teacher Resources
Abstraction Bridges
Robotics education has the ability to excite and engage students in science, technology, engineering, and mathematics (STEM). Robots are intrinsically motivating to students and introduce a rich range of STEM concepts. Mathematics is a fundamental component of STEM careers and that is our focus. Our team has a multiyear collaboration studying robotics education and has observed how a single 30-minute robotics activity designed for middle-schoolers can in rapid-fire touch upon measurement, geometry, algebra, and statistics concepts. In such an activity, there is no time to focus instruction on any one mathematical concept, and we were not surprised that students made no mathematical progress over a full semester of engagement with such activities even though the instructor attempted to focus student attention on the mathematics. Our approach is to focus on one foundational mathematical construct, proportional reasoning, for an entire robotics unit, and indeed build it up over multiple robotics units. Proportional reasoning is a foundational mathematics concept that relates to a wide range of situations in everyday life and in the workplace, such as those that involve unit rates, mixtures, or scaling. Proportional reasoning is also central in understanding how a robot’s movements can be controlled, as the relationships between the physical construction of the robot, the values used to program the robot, and how the robot actually moves are often proportional in nature. Moreover, students need to understand rates, ratios, and proportions to develop algebraic ways of thinking.
During the summer of 2012 a set of teacher support materials were developed for teachers using the curriculum. The development team believes that teachers using the materials should participate in certified professional development programs to learn how to use the teacher support materials. The Robotics Academy includes training on RIM in their LEGO NXT training programs. During the fall of 2012 we will test the materials with 10 regional middle schools. This testing will be used to inform the next round of curriculum improvements.
This project developed three instructional units designed to foreground measurement, direct proportionality, and indirect proportionality through robotics activities.
Through our Robots In Motion units, students are exposed to core mathematics ideas and problem solving strategies in ways that build upon and extend their mathematical thinking. However, we believe addition intervention is required to develop mathematical fluency because of the following issues with the problem-based units:
We believe that robotics units can build up a core understanding, but additional work is required to generalize the learning. In particular, we believe additional assessment/practice opportunities are required. These paper-based word problems are called Abstraction Bridges—they act as a bridge from contextual mathematics in robotics problem solving to generalized mathematical problem solving abilities. They have the following form:
Below are sample problems, drawn from existing mathematics education resources.
Abstraction Bridge Problem – Rectangle Fractions
About how big is 4/5 of this rectangle? Show your answer by shading in the rectangle?
What other fractions are near 4/5 in size? Explain your answers.
Abstraction Bridge Problem – Graffiti Growth
You are doing a scientific study of graffiti in your local park. On the first day of spring, there is no graffiti.
On the second day, there are two drawings. On the third day, there are four drawings. You couldn't check on the
fourth day, but on the fifth day, there are eight drawings.
If this keeps up, how many graffiti drawings will there be on day 10? On what day will there be 40 graffiti drawings? How do you know?
A future goal of this project is to develop a larger database of ratio and proportion problems and make them available to educators. The problems will range in contexts, mathematical concept, and difficult. These problems will be distributed through a teacher-useable/managed database. More specifically, we will: